Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biol Sport ; 38(3): 465-474, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34475628

RESUMEN

The purpose of this study was to explore the association of the MCT1 gene Glu490Asp polymorphism (rs1049434) with athletic status and performance of endurance athletes. A total of 1,208 Brazilians (318 endurance athletes and 890 non-athletes) and 867 Europeans (315 endurance athletes and 552 non-athletes) were evaluated in a case-control approach. Brazilian participants were classified based on self-declared ethnicity to test whether the polymorphism was different between Caucasians and Afro-descendants. Moreover, 66 Hungarian athletes underwent an incremental test until exhaustion to assess blood lactate levels, while 46 Russian athletes had their maximum oxygen uptake ( V ⋅ O 2 max ) compared between genotypes. In the Brazilian cohort, the major T-allele was more frequent in Caucasian top-level competitors compared to their counterparts of lower competitive level (P = 0.039), and in Afro-descendant athletes compared to non-athletes (P = 0.015). Similarly, the T-allele was more frequent in European athletes (P = 0.029). Meta-analysis of the Brazilian and European cohorts confirmed that the T-allele is over-represented in endurance athletes (OR: 1.48, P = 0.03), especially when Afro-descendant athletes were included in the meta-analysis (OR: 1.58, P = 0.005). Furthermore, carriers of the T/T genotype accumulated less blood lactate in response to intense effort (P < 0.01) and exhibited higher V ⋅ O 2 max (P = 0.04). In conclusion, the Glu490Asp polymorphism was associated with endurance athletic status and performance. Our findings suggest that, although ethnic differences may exist, the presence of the major T-allele (i.e., the Glu-490 allele) favours endurance performance more than the mutant A-allele (i.e., the 490-Asp allele).

2.
Eur J Appl Physiol ; 120(3): 665-673, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31970519

RESUMEN

PURPOSE: Iron is an important component of the oxygen-binding proteins and may be critical to optimal athletic performance. Previous studies have suggested that the G allele of C/G rare variant (rs1799945), which causes H63D amino acid replacement, in the HFE is associated with elevated iron indexes and may give some advantage in endurance-oriented sports. The aim of the present study was to investigate the association between the HFE H63D polymorphism and elite endurance athlete status in Japanese and Russian populations, aerobic capacity and to perform a meta-analysis using current findings and three previous studies. METHODS: The study involved 315 international-level endurance athletes (255 Russian and 60 Japanese) and 809 healthy controls (405 Russian and 404 Japanese). Genotyping was performed using micro-array analysis or by PCR. VO2max in 46 male Russian endurance athletes was determined using gas analysis system. RESULTS: The frequency of the iron-increasing CG/GG genotypes was significantly higher in Russian (38.0 vs 24.9%; OR 1.85, P = 0.0003) and Japanese (13.3 vs 5.0%; OR 2.95, P = 0.011) endurance athletes compared to ethnically matched controls. The meta-analysis using five cohorts (two French, Japanese, Spanish, and Russian; 586 athletes and 1416 controls) showed significant prevalence of the CG/GG genotypes in endurance athletes compared to controls (OR 1.96, 95% CI 1.58-2.45; P = 1.7 × 10-9). Furthermore, the HFE G allele was associated with high V̇O2max in male athletes [CC: 61.8 (6.1), CG/GG: 66.3 (7.8) ml/min/kg; P = 0.036]. CONCLUSIONS: We have shown that the HFE H63D polymorphism is strongly associated with elite endurance athlete status, regardless ethnicities and aerobic capacity in Russian athletes.


Asunto(s)
Proteína de la Hemocromatosis/genética , Resistencia Física/genética , Atletas , Estudios de Casos y Controles , Humanos , Polimorfismo de Nucleótido Simple
3.
Exp Physiol ; 99(8): 1042-52, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24887114

RESUMEN

Muscle fibre type is a heritable trait and can partly predict athletic success. It has been proposed that polymorphisms of genes involved in the regulation of muscle fibre characteristics may predispose the muscle precursor cells of a given individual to be predominantly fast or slow. In the present study, we examined the association between 15 candidate gene polymorphisms and muscle fibre type composition of the vastus lateralis muscle in 55 physically active, healthy men. We found that rs11091046 C allele carriers of the angiotensin II type 2 receptor gene (AGTR2; involved in skeletal muscle development, metabolism and circulatory homeostasis) had a significantly higher percentage of slow-twitch fibres than A allele carriers [54.2 (11.1) versus 45.2 (10.2)%; P = 0.003]. These data indicate that 15.2% of the variation in muscle fibre composition of the vastus lateralis muscle can be explained by the AGTR2 genotype. Next, we investigated the frequencies of the AGTR2 alleles in 2178 Caucasian athletes and 1220 control subjects. The frequency of the AGTR2 C allele was significantly higher in male and female endurance athletes compared with power athletes (males, 62.7 versus 51.7%, P = 0.0038; females, 56.6 versus 48.1%, P = 0.0169) and control subjects (males, 62.7 versus 51.0%, P = 0.0006; elite female athletes, 65.1 versus 55.2%, P = 0.0488). Furthermore, the frequency of the AGTR2 A allele was significantly over-represented in female power athletes (51.9%) in comparison to control subjects (44.8%, P = 0.0069). We also found that relative maximal oxygen consumption was significantly greater in male endurance athletes with the AGTR2 C allele compared with AGTR2 A allele carriers [n = 28; 62.3 (4.4) versus 57.4 (6.0) ml min(-1) kg(-1); P = 0.0197]. Taken together, these results demonstrate that the AGTR2 gene C allele is associated with an increased proportion of slow-twitch muscle fibres, endurance athlete status and aerobic performance, while the A allele is associated with a higher percentage of fast-twitch fibres and power-oriented disciplines.


Asunto(s)
Ejercicio Físico/fisiología , Fibras Musculares de Contracción Lenta/metabolismo , Fibras Musculares de Contracción Lenta/fisiología , Polimorfismo Genético/genética , Receptor de Angiotensina Tipo 2/genética , Deportes/fisiología , Adulto , Alelos , Atletas , Femenino , Genotipo , Humanos , Masculino , Consumo de Oxígeno/fisiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...